The yeast mitotic cyclin Clb2 cannot substitute for S phase cyclins in replication origin firing.

نویسنده

  • A D Donaldson
چکیده

Cyclin-dependent kinases (CDKs) drive the cell cycle, central to which is the accurate control of chromosome replication. In Saccharomyces cerevisiae, six closely related B-type cyclins (Clb1-6) drive the events of S phase and mitosis. Either Clb5 or Clb6 can activate early-firing replication origins, whereas only Clb5 can activate late origins. Clb1-4 are expressed later in the cell cycle. Whether Clb cyclins differ only in timing of expression, or else impart different kinase specificities is under ongoing investigation. This study shows that the expression of Clb2 during S phase in cells lacking Clb5 failed to rescue late origin activation. Early expression of Clb2 in cells lacking both Clb5 and Clb6 did not activate early origins on schedule to restore the correct S phase entry time. Therefore, Clb2 cannot drive timely activation of either early or late replication origins, demonstrating that Clb2-directed CDK has a specificity distinct from that driven by Clb5 and Clb6.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interplay between S-cyclin-dependent kinase and Dbf4-dependent kinase in controlling DNA replication through phosphorylation of yeast Mcm4 N-terminal domain.

Cyclin-dependent (CDK) and Dbf4-dependent (DDK) kinases trigger DNA replication in all eukaryotes, but how these kinases cooperate to regulate DNA synthesis is largely unknown. Here, we show that budding yeast Mcm4 is phosphorylated in vivo during S phase in a manner dependent on the presence of five CDK phosphoacceptor residues within the N-terminal domain of Mcm4. Mutation to alanine of these...

متن کامل

Interplay between S-CDK and DDK in controlling DNA replication through phosphorylation of yeast Mcm4 N-terminal domain

Cyclin-dependent (CDK) and Dbf4-dependent (DDK) kinases trigger DNA replication in all eukaryotes but how these kinases cooperate to regulate DNA synthesis is largely unknown. Here we show that budding yeast Mcm4 is phosphorylated in vivo during S phase in a manner dependent on the presence of five CDK phosphoacceptor residues within Mcm4's N-terminal domain. Mutation to alanine of these five s...

متن کامل

Yeast Hct1 Is a Regulator of Clb2 Cyclin Proteolysis

Stage-specific proteolysis of mitotic cyclins is fundamental to eukaryotic cell cycle regulation. We found that yeast Hct1, a conserved protein of eukaryotes, is a necessary and rate-limiting component of this proteolysis pathway. In hct1 mutants, the mitotic cyclin Clb2 is highly stabilized and inappropriately induces DNA replication, while G1 cyclins and other proteolytic substrates remain sh...

متن کامل

Ectopic induction of Clb2 in early G1 phase is sufficient to block prereplicative complex formation in Saccharomyces cerevisiae.

Eukaryotic cells ensure the stable propagation of their genome by coupling each round of DNA replication (S phase) to passage through mitosis (M phase). This control is exerted at the initiation of replication, which occurs at multiple origins throughout the genome. Once an origin has initiated, reinitiation is blocked until the completion of mitosis, ensuring that DNA is replicated at most onc...

متن کامل

Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae.

Cyclin-dependent kinases (CDKs) drive the cell cycle through the phosphorylation of substrates that function in genome duplication and cell division. The existence of multiple cyclin subunits and their distinct cell cycle-regulated expression suggests that cyclins impart unique specificities to CDK-substrate interactions that are critical for normal cellular function. This study shows that the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EMBO reports

دوره 1 6  شماره 

صفحات  -

تاریخ انتشار 2000